

INNOVATIONS IN WARM MIX ASPHALT

ECONOMICS AND THE ENVIRONMENT

- Primary drivers of innovation today.
- Sustainability
 - Of materials
 - Of pavements
 - Of energy
 - Of funding
 - Of market share

WMA BENEFITS

- Reduced fuel used for heating (15 to 30% reduction)
- Reduced greenhouse gases
- Construction benefits (compaction aid)
- May facilitate longer haul distances
- May allow colder weather paving
- May allow higher recycled contents (RAP, RAS)

LONGER HAUL DISTANCES

- WMA cools slower than HMA
 - Cooling rate proportional to difference between mix and air temperatures
- Compaction achieved at lower temps
- May be able to haul longer, farther and still achieve good compaction and performance
- Many successful examples of 1–3 hour hauls

EMERGENCY PAVING STUDY

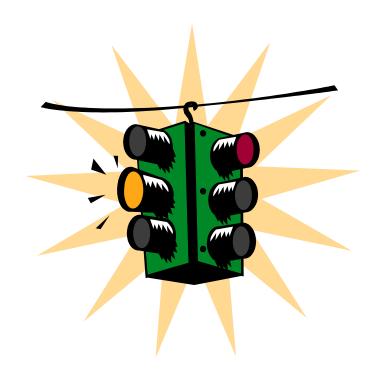
- Recovering from natural disasters
- Plants in area may be shut down
- How far can you haul mix using WM technology at hot temperatures?
- Mississippi State study tested plant mix hauled from 1 to 10.5 hours
- Conclusion 1 to 8 hour haul times feasible

EMERGENCY PAVING STUDY

- G_{mm} and P_{ba} increased as haul time increased
 - Could add 0.1 to 0.2% binder to counteract (check with your materials)
- Haul times of up to 8.4 hours acceptable with foam or additive
 - At 10.5 hrs, Additive mix had low temp grade
 5.2°C warmer, high temp grade 4.4°higher
- No unusual molecular changes with aging
- Mixes remained workable after long haul

May need to use WMA as compaction aid at "normal" production temperatures

COLD WEATHER PAVING


- Lower rate of cooling
- Density obtainable at lower temperatures

oWMA may help extend paving season.

Examples of Cold Weather Paving

- Examples from Europe, New York,
 South Carolina, and others show good density can be achieved
- Road in China paved after earthquake
 - High altitude, low temp (~5°C (40°F))
 - Densities of 98-99% of Marshall density achieved

Again, may need to produce at "normal" temperatures for cold weather paving.

HIGHER RAP CONTENTS

- oRAP used since 1970s
 - Spurred by high prices, Arab Oil Embargo
 - Development of milling technology
- Today strong incentives to use higher amounts of RAP in more mixes
 - High prices again
 - Helps contractors stay competitive
 - Helps asphalt compete with concrete

RECLAIMED BINDER

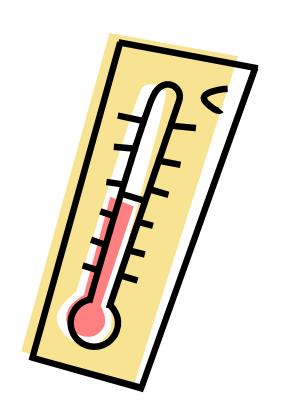
- RAP increases mix stiffness
 - Negligible at low RAP contents
 - More important at high RAP contents
 - Could increase cracking thermal, fatigue and reflective
- Especially true for RAS?

RAS = RECYCLED ASPHALT SHINGLES

- o High binder contents, as high as 30%.
 - Greatly reduces demand for new binder
 - Hard, angular fine aggregate and fibers
- But, binder is very stiff (oxidized)
 - More likely to crack???
- Allowable shingle content is about 20–25% as high as allowable RAP content.

WARM MIX ASPHALT

- Energy Savings
- Decreased Emissions
 Visible and Non-Visible
- Decreased Fumes
- Extended Paving Season
- Compaction Aid
- Decreased Binder Aging
- Potential for Increased RAP/RAS Usage



BINDER AGING

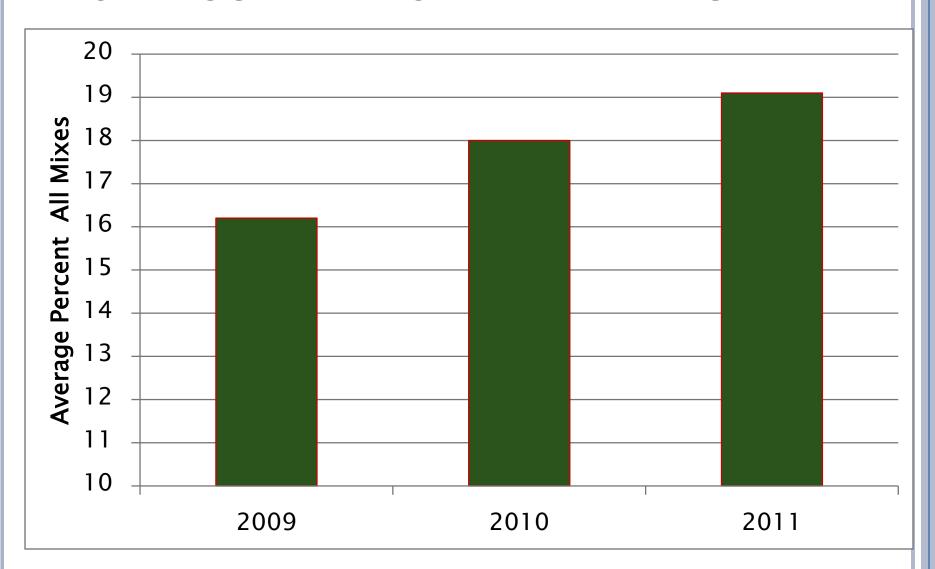
Function of:

- Temperature
- Time at elevated temperature

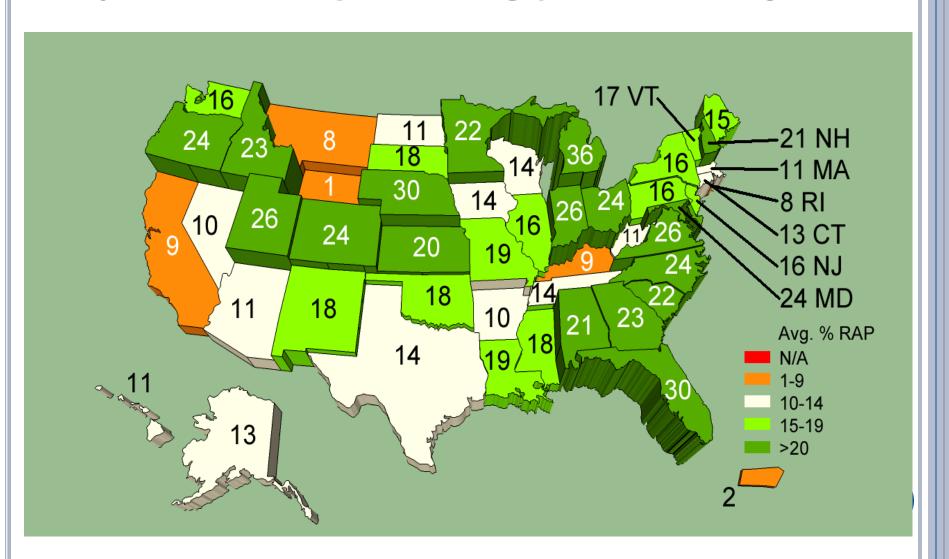
 Less aging at WMA temps may help with reclaimed binders

WMA + RAP AND/OR RAS

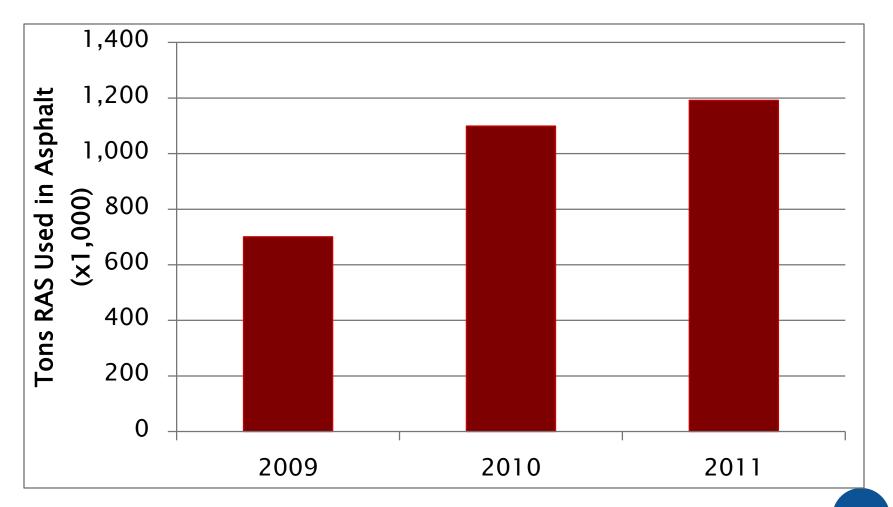
- RAP contents of 50% with WMA
 - Improved rut resistance
 - Better resistance to moisture damage
 - Little to no effect on cracking
- Do they blend?
 - NCHRP 9-43 found RAP will if production temperature > high PG grade of recovered binder
 - Other work shows effect of RAP on high PG > effect on low PG


NCHRP RESEARCH

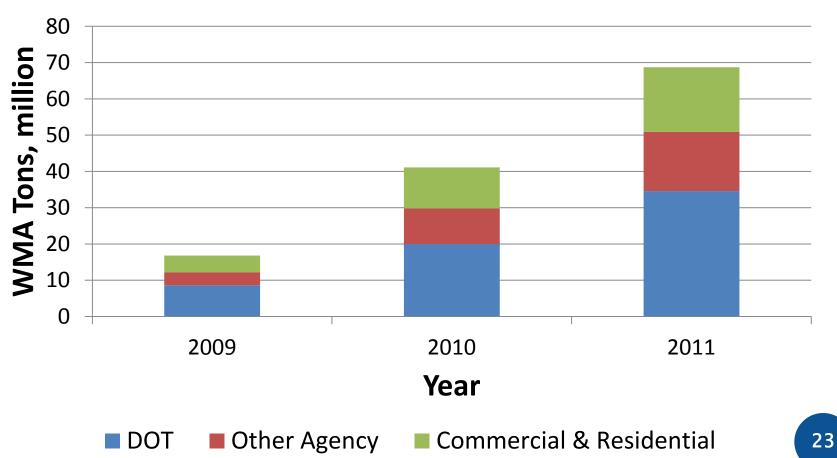
- o 9−43, WMA Mix Design (completed)
- o 9-46, High RAP Mix Design and Management (final deliverables in review)
- o 9−47 WMA Emissions, Properties (completed)
- 9-47A, Properties and Performance of WMA (2013)
- o 9–49, WMA Moisture Susceptibility (2013)
- o 9-49A, Long-Term Field Performance (2016)
- o 9−53, Properties of Foamed WMA (2014)
- o 9−55, Shingles and RAP/RAS in WMA (2016)


How Much is Used?

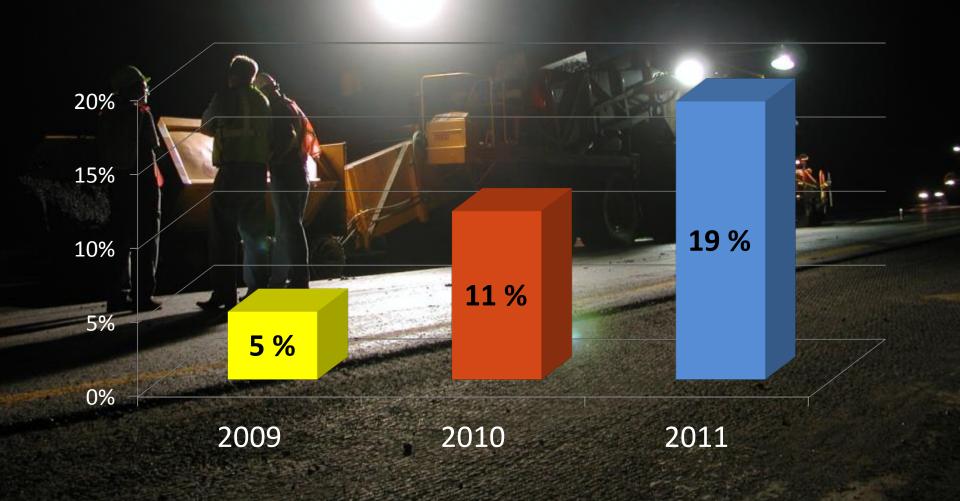
- FHWA/NAPA survey of producers
 - About 200 companies with over 1000 plants
- oCompared usage in 2009, 2010, 2011
- Thanks to Audrey Copeland and NAPA for slides and data


HOW MUCH RAP IS IN AN AVERAGE MIX?

2011 AVERAGE RAP CONTENT BY STATE


TONS RAS USED IN ASPHALT MIXES

Asphalt mix producers in 32 States use RAS 21



ESTIMATED WMA TONS

WMA Usage

Percentage of Total Asphalt Production in US

Mainstream Technologies

 RAP, RAS ETG and WMA TWG disbanded

- Rolled into existing Asphalt Mix ETG
 - Certain issues may go to Binder ETG
- Sign that these technologies are becoming mainstream

LTPP

- Long Term Pavement Performance Program
- Adding WMA field study
- Different WMA technologies
- RAP included
 - RAS could be in supplemental sections
- Adding WMA to national database
- Will gather uniform data on performance

CHANGES IN US PRACTICE

- Higher RAP contents in more mixtures.
- More contractors are fractionating.
- More interest in recycling asphalt shingles.
- More states are using binder replacement (or equivalent).
- WMA growing tremendously.

AASHTO RAP SPECS CONSERVATIVE?

- INDOT study showed they could use higher recycled contents before changing grade.
 - Up to 25% before changing binder grade
 - Up to 40% by using one grade softer
 - Using binder replacement
- INDOT evaluated over 30 RAP stockpiles around the state – they know what their RAP is like.

KNOW YOUR MATERIALS

• Here is what Indiana DOT did to evaluate their typical materials and revise their specifications for RAP mixes.

Slides, data from Matt
 Beeson, INDOT Asphalt
 Engineer

BACKGROUND

- o Indiana is a non-PG Plus state
- Base grade PG 64–22 statewide
- o PG 70-22 and PG 76-22 based on traffic
- PG 58-28, 64-28, and 70-28 for higher RAP contents
- Permissive WMA spec foamed only
- o Prior to 2010
 - Up to 15% RAP with no grade bump
 - Up to 25% RAP with one grade bump
- Are these the right limits?

APPROACH

- Characterized RAP and virgin binders statewide
- RAP samples from 33 HMA plants in 2007
 - Indiana has about 100 Certified HMA Plants
 - Producers are not required to separate RAP by source

AVERAGE RAP BINDER PROPERTIES

	High	Low	
	Temperature	Temperature	
Mean	90.2	-11.1	
Std. Deviation	5.02	3.11	
Minimum	83.0	-21.3	
Maximum	104.0	-0.8	

- ∘PG 90-11 average
- No statistical difference found between different regions of Indiana

AVERAGE VIRGIN PG GRADES

PG -28 Grades			PG -22 Grades		
Specified Binder Grade	High Temp	Low Temp	Specified Binder Grade	High Temp	Low Temp
PG 58-28	63.6	-28.8	PG 64-22	67.6	-24.6
PG 64-28	68.9	-29.6	PG 70-22	72.5	-25.1
PG 70-28	70.4	-29.3	PG 76-22	77.8	-25.8
Average	n/a	-28.7	Average	n/a	-25.1

From acceptance samples in 2008

ALLOWABLE BLEND PERCENTAGE

oAASHTO M 323 appendix

$$\% RAP = \frac{\text{Tblend - Tvirgin}}{\text{TRAP - Tvirgin}}$$

- %RAP Percent binder replacement
- •T_{RAP} binder grade of RAP asphalt binder
- •T_{virgin} binder grade of virgin asphalt binder
- oT_{blend} binder grade of blended asphalt binder

ALLOWABLE BLEND PERCENTAGE

High Temperature Grade

- High temperature PG grade of the RAP
 Greater than target
- High temperature PG grade of virgin binder
 - Greater than target
- Blend is always going to be greater than specified PG grade

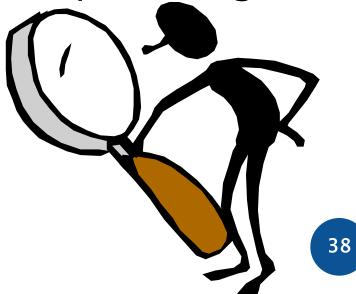
ALLOWABLE BLEND PERCENTAGE

- Low Temperature Grade
 - All blends targeting –22°C
- oUsing −22°C virgin binder

$$\% RAP = \frac{\text{T}_{\text{blend}} - \text{T}_{\text{virgin}}}{\text{T}_{\text{RAP}} - \text{T}_{\text{virgin}}} = \frac{-22.0 - (-25.1)}{-11.1 - (-25.1)} = 22.7\%$$

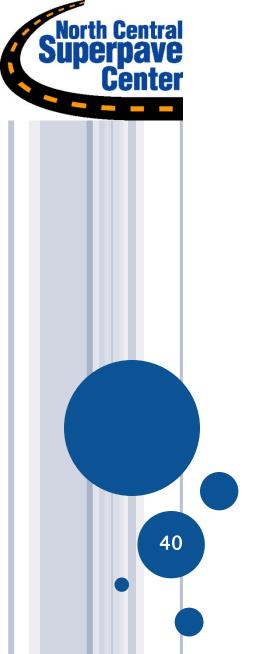
oUsing −28°C virgin binder

$$\% RAP = \frac{\text{T}_{\text{blend}} - \text{T}_{\text{virgin}}}{\text{T}_{\text{RAP}} - \text{T}_{\text{virgin}}} = \frac{-22.0 - (-28.7)}{-11.1 - (-28.7)} = 38.1\%$$


SPECIFICATION CHANGE

- Based on INDOT findings and NCSC study
 - Up to 25% Binder Replacement allowed without a virgin PG grade change
 - 25% 40% Binder Replacement with high and low temperature PG grades reduced by one grade
 - Open Graded mixtures and high volume surface mixtures still limited to 25%

TAKE AWAY


- Similar study can be completed in any state
 - Grade RAP samples
 - Grade virgin PG binder samples
 - Determine allowable blend percentage
- Florida DOT has done

o Know your materials!

WHAT WE HAVE LEARNED

- High RAP contents can perform well if properly designed, produced, constructed.
- Start with good mix design that accounts for the RAP.
- Shingles use increasing, appears promising.
- WMA increasing rapidly.
 - Longer haul distances
 - Cold weather paving
 - May allow for higher RAP and RAS contents.
- With caution and knowledge of materials

THANK YOU!

Rebecca S. McDaniel
Technical Director
North Central Superpave Center
Purdue University
West Lafayette, IN
rsmcdani@purdue.edu
765/463-2317 ext 226
https://engineering.purdue.edu/NCSC